ChatTongyi
Tongyi Qwen is a large language model developed by Alibaba's Damo Academy. It is capable of understanding user intent through natural language understanding and semantic analysis, based on user input in natural language. It provides services and assistance to users in different domains and tasks. By providing clear and detailed instructions, you can obtain results that better align with your expectations.
In this notebook, we will introduce how to use langchain with Tongyi mainly in Chat
corresponding
to the package langchain/chat_models
in langchain
# Install the package
%pip install --upgrade --quiet dashscope
# Get a new token: https://help.aliyun.com/document_detail/611472.html?spm=a2c4g.2399481.0.0
from getpass import getpass
DASHSCOPE_API_KEY = getpass()
import os
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage
chatLLM = ChatTongyi(
streaming=True,
)
res = chatLLM.stream([HumanMessage(content="hi")], streaming=True)
for r in res:
print("chat resp:", r)
chat resp: content='Hello' id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
chat resp: content='!' id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
chat resp: content=' How' id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
chat resp: content=' can I assist you today' id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
chat resp: content='?' id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
chat resp: content='' response_metadata={'finish_reason': 'stop', 'request_id': '921db2c5-4d53-9a89-8e87-e4ad6a671237', 'token_usage': {'input_tokens': 20, 'output_tokens': 9, 'total_tokens': 29}} id='run-f2301962-6d46-423c-8afa-1e667bd11e2b'
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French. I love programming."
),
]
chatLLM(messages)
/Users/cheese/PARA/Projects/langchain-contribution/langchain/libs/core/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `BaseChatModel.__call__` was deprecated in langchain-core 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
AIMessage(content="J'adore programmer.", response_metadata={'model_name': 'qwen-turbo', 'finish_reason': 'stop', 'request_id': 'ae725086-0ffa-9728-8c72-b204c7bc7eeb', 'token_usage': {'input_tokens': 36, 'output_tokens': 6, 'total_tokens': 42}}, id='run-060cc103-ef5f-4c8a-af40-792ac7f40c26-0')
Tool Calling
ChatTongyi supports tool calling API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool.
Use with bind_tools
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
llm = ChatTongyi(model="qwen-turbo")
llm_with_tools = llm.bind_tools([multiply])
msg = llm_with_tools.invoke("What's 5 times forty two")
print(msg)
content='' additional_kwargs={'tool_calls': [{'function': {'name': 'multiply', 'arguments': '{"first_int": 5, "second_int": 42}'}, 'id': '', 'type': 'function'}]} response_metadata={'model_name': 'qwen-turbo', 'finish_reason': 'tool_calls', 'request_id': '4acf0e36-44af-987a-a0c0-8b5c5eaa1a8b', 'token_usage': {'input_tokens': 200, 'output_tokens': 25, 'total_tokens': 225}} id='run-0ecd0f09-1d20-4e55-a4f3-f14d1f710ae7-0' tool_calls=[{'name': 'multiply', 'args': {'first_int': 5, 'second_int': 42}, 'id': ''}]
Construct args manually
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage, SystemMessage
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "当你想知道现在的时间时非常有用。",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "当你想查询指定城市的天气时非常有用。",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市或县区,比如北京市、杭州市、余杭区等。",
}
},
},
"required": ["location"],
},
},
]
messages = [
SystemMessage(content="You are a helpful assistant."),
HumanMessage(content="What is the weather like in San Francisco?"),
]
chatLLM = ChatTongyi()
llm_kwargs = {"tools": tools, "result_format": "message"}
ai_message = chatLLM.bind(**llm_kwargs).invoke(messages)
ai_message
AIMessage(content='', additional_kwargs={'tool_calls': [{'function': {'name': 'get_current_weather', 'arguments': '{"location": "San Francisco"}'}, 'id': '', 'type': 'function'}]}, response_metadata={'model_name': 'qwen-turbo', 'finish_reason': 'tool_calls', 'request_id': '87ef33d2-5c6b-9457-91e2-39faad7120eb', 'token_usage': {'input_tokens': 229, 'output_tokens': 19, 'total_tokens': 248}}, id='run-7939ba7f-e3f7-46f8-980b-30499b52723c-0', tool_calls=[{'name': 'get_current_weather', 'args': {'location': 'San Francisco'}, 'id': ''}])
Partial Mode
Enable the large model to continue generating content from the initial text you provide.
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import AIMessage, HumanMessage
messages = [
HumanMessage(
content="""Please continue the sentence "Spring has arrived, and the earth" to express the beauty of spring and the author's joy."""
),
AIMessage(
content="Spring has arrived, and the earth", additional_kwargs={"partial": True}
),
]
chatLLM = ChatTongyi()
ai_message = chatLLM.invoke(messages)
ai_message
AIMessage(content=' has cast off its heavy cloak of snow, donning instead a vibrant garment of fresh greens and floral hues; it is as if the world has woken from a long slumber, stretching and reveling in the warm caress of the sun. Everywhere I look, there is a symphony of life: birdsong fills the air, bees dance from flower to flower, and a gentle breeze carries the sweet fragrance of blossoms. It is in this season that my heart finds particular joy, for it whispers promises of renewal and growth, reminding me that even after the coldest winters, there will always be a spring to follow.', additional_kwargs={}, response_metadata={'model_name': 'qwen-turbo', 'finish_reason': 'stop', 'request_id': '447283e9-ee31-9d82-8734-af572921cb05', 'token_usage': {'input_tokens': 40, 'output_tokens': 127, 'prompt_tokens_details': {'cached_tokens': 0}, 'total_tokens': 167}}, id='run-6a35a91c-cc12-4afe-b56f-fd26d9035357-0')
Tongyi With Vision
Qwen-VL(qwen-vl-plus/qwen-vl-max) are models that can process images.
from langchain_community.chat_models import ChatTongyi
from langchain_core.messages import HumanMessage
chatLLM = ChatTongyi(model_name="qwen-vl-max")
image_message = {
"image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png",
}
text_message = {
"text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
chatLLM.invoke([message])
AIMessage(content=[{'text': 'The image presents a flowchart of an artificial intelligence system. The system is divided into two main components: short-term memory and long-term memory, which are connected to the "Memory" box.\n\nFrom the "Memory" box, there are three branches leading to different functionalities:\n\n1. "Tools" - This branch represents various tools that the AI system can utilize, including "Calendar()", "Calculator()", "CodeInterpreter()", "Search()" and others not explicitly listed.\n\n2. "Action" - This branch represents the action taken by the AI system based on its processing of information. It\'s connected to both the "Tools" and the "Agent" boxes.\n\n3. "Planning" - This branch represents the planning process of the AI system, which involves reflection, self-critics, chain of thoughts, subgoal decomposition, and other processes not shown.\n\nThe central component of the system is the "Agent" box, which seems to orchestrate the flow of information between the different components. The "Agent" interacts with the "Tools" and "Memory" boxes, suggesting it plays a crucial role in the AI\'s decision-making process. \n\nOverall, the image depicts a complex and interconnected artificial intelligence system, where different components work together to process information, make decisions, and take actions.'}], response_metadata={'model_name': 'qwen-vl-max', 'finish_reason': 'stop', 'request_id': '6a2b9e90-7c3b-960d-8a10-6a0cf9991ae5', 'token_usage': {'input_tokens': 1262, 'output_tokens': 260, 'image_tokens': 1232}}, id='run-fd030661-c734-4580-b977-b77d42680742-0')
Related
- Chat model conceptual guide
- Chat model how-to guides